WARNING
Prior to the export of this document, review for export license requirement is needed.

COPYRIGHT NOTICE

©1975-2001 Honeywell International Inc.

Reproduction of this publication or any portion thereof by any means without the express written permission of Honeywell is prohibited. For further information contact the manager, Technical Publications, Honeywell, One Technology Center, 23500 West 105th Street Olathe KS 66061 telephone: (913) 712-0400.
The binder(s) required to hold this publication(s) are available at an additional cost and may be ordered from:

Honeywell
One Technology Center
23500 West 105th Street
Olathe, Kansas, 66061
Telephone 1-800-757-8999

Orders must specify part number, description, and the quantity. Use the following list to complete the order

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>006-03140-0001</td>
<td>(1) inch Binder.</td>
</tr>
<tr>
<td>006-03140-0002</td>
<td>(1.5) inch Binder.</td>
</tr>
<tr>
<td>006-03140-0003</td>
<td>(2) inch Binder.</td>
</tr>
<tr>
<td>006-03140-0004</td>
<td>(3) inch Binder.</td>
</tr>
<tr>
<td>006-03140-0005</td>
<td>(4) inch Post Binder.</td>
</tr>
</tbody>
</table>

WARNING
Prior to the export of this document, review for export license requirement is needed.

COPYRIGHT NOTICE
©1975-2001 Honeywell International Inc.

Reproduction of this publication or any portion thereof by any means without the express written permission of Honeywell is prohibited. For further information contact the manager, Technical Publications, Honeywell, One Technology Center, 23500 West 105th Street Olathe KS 66061 telephone: (913) 712-0400.
REVISION HISTORY

KA 51 Maintenance Manual

Part Number: 006-15625-XXXX

For each revision, add, delete, or replace pages as indicated.

REVISION No. 7, July 2001

<table>
<thead>
<tr>
<th>ITEM</th>
<th>ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>All pages</td>
<td>Full Reprint, new manual</td>
</tr>
</tbody>
</table>

Revision 7 creates a new stand-alone manual for the KA 51 which was extracted from revision 6 of the KCS 55/55A maintenance manual, (P/N 006-05111-0006). Any revisions to the KA 51, beginning with revision 7, will not be a part of the KCS 55/55A manual.
THIS PAGE IS RESERVED
TABLE OF CONTENTS

SECTION IV
THEORY OF OPERATION

<table>
<thead>
<tr>
<th>PARAGRAPH</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 General</td>
<td>4-1</td>
</tr>
<tr>
<td>4.2 Slave Meter Description</td>
<td>4-1</td>
</tr>
<tr>
<td>4.3 Auto-Manual Slave Switch Operation</td>
<td>4-1</td>
</tr>
<tr>
<td>4.4 Flux Valve Compensation Circuit</td>
<td>4-2</td>
</tr>
</tbody>
</table>

SECTION V
MAINTENANCE

<table>
<thead>
<tr>
<th>PARAGRAPH</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 General Information</td>
<td>5-1</td>
</tr>
<tr>
<td>5.2 Test and Alignment</td>
<td>5-1</td>
</tr>
<tr>
<td>5.2.1 General Requirements</td>
<td>5-1</td>
</tr>
<tr>
<td>5.2.2 Signal Test Sources and Test Equipment</td>
<td>5-1</td>
</tr>
<tr>
<td>5.2.3 Test Requirements</td>
<td>5-1</td>
</tr>
<tr>
<td>5.3 Overhaul</td>
<td>5-7</td>
</tr>
<tr>
<td>5.3.1 Visual Inspection</td>
<td>5-7</td>
</tr>
<tr>
<td>5.3.2 Cleaning</td>
<td>5-8</td>
</tr>
<tr>
<td>5.3.3 Repair</td>
<td>5-13</td>
</tr>
<tr>
<td>5.3.4 Disassembly/Assembly Procedures</td>
<td>5-17</td>
</tr>
<tr>
<td>5.4 Troubleshooting</td>
<td>5-17</td>
</tr>
</tbody>
</table>

SECTION VI
ILLUSTRATED PARTS LIST

<table>
<thead>
<tr>
<th>PARAGRAPH</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1 General</td>
<td>6-1</td>
</tr>
<tr>
<td>6.2 Revision Service</td>
<td>6-1</td>
</tr>
<tr>
<td>6.3 List of Abbreviations</td>
<td>6-1</td>
</tr>
<tr>
<td>6.4 Sample Parts List</td>
<td>6-3</td>
</tr>
<tr>
<td>6.5 KA 51 Final Assembly</td>
<td>6-5</td>
</tr>
<tr>
<td>6.6 Compensator P. C. Board</td>
<td>6-13</td>
</tr>
</tbody>
</table>

Rev 7, July/2001 15625M07.JA Page i
LIST OF ILLUSTRATIONS

<table>
<thead>
<tr>
<th>FIGURE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-1</td>
<td>Slave Meter System Diagram</td>
</tr>
<tr>
<td>4-2</td>
<td>KA 51 Compensator System Diagram</td>
</tr>
<tr>
<td>4-3</td>
<td>KA 51 800Hz Generator Circuit</td>
</tr>
<tr>
<td>4-4</td>
<td>E/W Compensation Diagram</td>
</tr>
<tr>
<td>4-5</td>
<td>N/S Compensation Schematic</td>
</tr>
<tr>
<td>5-1</td>
<td>Waveforms</td>
</tr>
<tr>
<td>5-2</td>
<td>Waveforms</td>
</tr>
<tr>
<td>5-3</td>
<td>Waveforms</td>
</tr>
<tr>
<td>5-4</td>
<td>KA 51 Test Circuit</td>
</tr>
<tr>
<td>5-5</td>
<td>KA 51 Troubleshooting Flow Chart</td>
</tr>
<tr>
<td>6-1</td>
<td>Sample Parts List</td>
</tr>
<tr>
<td>6-2</td>
<td>KA 51 Final Assembly</td>
</tr>
<tr>
<td>6-3</td>
<td>KA 51 Schematic Diagram</td>
</tr>
<tr>
<td>6-4</td>
<td>KA 51 Compensator P. C. Board Assembly</td>
</tr>
</tbody>
</table>
SECTION IV
THEORY OF OPERATION

4.1 GENERAL
The KA 51 slaving accessory consists of three individual circuit functions; a slave meter, an auto-manual slave switching function, and a flux valve compensation circuit.

4.2 SLAVE METER DESCRIPTION
Slave meter current is generated in the KG 102 directional gyro and represents the difference between the existing aircraft heading and the heading displayed on the KI 525 indicator. A positive indication represents an actual heading that is greater than the displayed heading. See figure 4-1.

4.3 AUTO-MANUAL SLAVE SWITCH OPERATION
The auto and manual slave switches located on the front panel of the KA 51 are normally grounded push button switches. Operation of the CW and CCW momentary buttons causes a 5 volts signal to be transmitted to KG 102 directional gyro. This signal results in a CW or CCW pulse train to be sent to the KI 525 display where the compass card rotates in response to the switching action. A third switch located between the other two, is an alternate action unit used to engage the auto slave function in the KG 102. As with the CW and CCW switches a 5 volt signal is transmitted to the KG 102 whenever the switch is depressed.
4.4 FLUX VALVE COMPENSATION CIRCUIT

In addition to the slave meter and slave switching functions, the KA 51 also include the flux valve compensation circuit. This circuit operates in parallel with the flux valve to PNI connection as shown in Figure 4-2.

The basic operational principle involves the summation of a low amplitude 800Hz signal, appropriately phased, with the 800Hz flux valve signal. This summation results in a shift of the magnetic direction vector and thus can compensate for "hard iron" effects in the aircraft fuselage and flight surfaces.

A full wave bridge rectifier consisting of diodes CR101 thru CR104, converts the 400Hz flux valve excitation waveform to 800Hz as shown in Figure 4-3. The DC component of this waveform is removed by capacitor C101, and the AC portion is used to drive transformer T101.

FIGURE 4-2 KA 51 COMPENSATOR SYSTEM DIAGRAM

FIGURE 4-3 KA 51 800HZ GENERATOR CIRCUIT
Two isolated secondaries of T101 provide the North-South and East-West correction voltages required to offset the magnetic vector in the flux valve. One of the secondaries is connected across the X and Y windings of the flux valve as shown in Figure 4-4. Adjustment of the E/W potentiometer, R106, will cause in-phase or out-of-phase 800Hz current to flow through resistor R103 and thence through the X-Y winding of the flux valve generating the desired east-west offset.

![Figure 4-4 E/W Compensation Diagram](image)

Likewise, the other secondary winding is connected across the Z leg and the parallel connected X and Y legs as shown in Figure 4-5. Adjustment of the N/S potentiometer, R105, will cause in-phase or out-of-phase 800Hz current to flow through the Z leg of the flux valve. This current is then equally divided by the X and Y legs as it flows through resistors R101 and R102 back to the transformer center top. By dividing the current in this way, North-South compensation will not affect the east-west adjustment and vice-versa.

![Figure 4-5 N/S Compensation Schematic](image)
THIS PAGE IS RESERVED
SECTION V
MAINTENANCE

5.1 GENERAL INFORMATION

This section deals with the testing, overhaul and troubleshooting procedures for the KA 51 Slaving Accessory.

5.2 TEST AND ALIGNMENT

This following establishes the performance requirements that this unit must meet before it can be used as part of an operational system.

5.2.1 GENERAL REQUIREMENTS

Unless otherwise specified, all tests shall be conducted with the unit in its normal operating position and at ambient room temperature (25 ±5 deg. C) and humidity not to exceed 80%.

5.2.1.1 ELECTRICAL Output Signals

a) Autoslave switch
 - Ground: OFF
 - +5VDC: ON

b) CW Manual slave
 - Ground: OFF
 - +5VDC: ON

c) CCW Manual slave
 - Ground: OFF
 - +5VDC: ON

d) Flux Valve Compensation outputs for N/S and E/W Correction.

5.2.1.2 ELECTRICAL Input Signals

a) Flux valve excitation voltage from the KG 102 gyro.
b) Slave meter drive signal from the KG 102 gyro.
c) Power input - +5VDC

5.2.1.3 MECHANICAL

a) Autoslave switch - SPDT alternate action pushbutton switch.

b) Manual slave switches - SPDT momentary action pushbutton switches.

5.2.2 SIGNAL TEST SOURCES AND TEST EQUIPMENT

a) Electronic test circuitry shown in Figure 5-4.
b) Test Equipment
 - DC voltmeter - Similar to Hewlett-Packard, Model 412A.
 - AC voltmeter - Similar to Ballantine Laboratories Inc., Model 300-G.
 - Oscilloscope - Similar to Tektronics, Model 516.

5.2.3 TEST REQUIREMENTS

1) Connect the unit as shown in Figure 5-4. Switch the 26VAC on and record the following voltages:

 a) Pin B +5.1 ± 1VDC
b) Pin C 0.0 ±0.05VDC
c) Pin A 0.0 ±0.05VDC
d) Pin D 0.0 ±0.05VDC
e) Pin 3 26 ±3VAC

2) Depress the SLAVE switch. The switch shall remain depressed.
 a) Pin C 5.1 ±1VDC
b) Pin A 0.0 ±0.05VDC
c) Pin D 0.0 ±0.05VDC

3) Depress the slave switch, the button shall release to the extended position. Manually depress the CCW slave button.
 a) Pin C 0.0 ±0.05VDC
b) Pin A 5.1 ±1VDC
c) Pin D 0.0 ±0.05VDC
 Release the CCW slave button. The button shall return to the extended position.

4) Depress the CW slave button.
 a) Pin C 0.0 ±0.05VDC
b) Pin A 0.0 ±0.05VDC
c) Pin D 5.1 ±1VDC
 Release the CW slave button. The button shall return to the extended position.

5) Adjust the slave meter pot to position the slave meter needle over the neg full scale mark.
 Pin E -0.88 ±0.15VDC
 Repeat for the positive full scale mark.
 Pin E +0.88 ±0.15VDC.

6) Adjust the slave meter pot for 0.0VDC at Pin E. The slave meter shall be within 1/2 needles width of center scale.

7) Connect the scope from Pin 6(+) to Pin 4(-). Adjust both the N/S and the E/W pots fully CW or fully CCW to obtain the waveform shown in Figure A below. Observe the waveforms from Pin 6(+) to 2(-) and from Pin 2(+) to 4(-). They shall appear as shown in figure 5-1 below.

FIGURE 5-1
8) With the scope connected from Pin 2(+) to Pin 4(-), rotate the E/W wiper to the opposite end of the pot. The waveform shall decrease in amplitude smoothly and then increase out of phase as shown in figure 5-2 below.

![Figure 5-2](image)

Rotating the E/W adjust pot to minimize the waveform amplitude.

9) Connect the scope between Pin 6 (+) and Pin 4 (-). Rotate the N/S wiper to the opposite end of the pot. The waveform shall decrease in amplitude smoothly and then increase out of phase as shown in figure 5-3 below.

![Figure 5-3](image)

Return the N/S wiper to the original position and repeat this test with scope leads between Pins 6 (+) and Pin 4 (-). Rotate the N/S adjust pot to minimize the waveform amplitude, disconnect the 26VAC input power and remove the unit.
FIGURE 5-4 KA 51 TEST CIRCUIT
TEST DATA SHEET

1) Power ON
 Pin B _____________ +5.1 ± 1VDC
 Pin C _____________ 0.0 ± 0.05VDC
 Pin A _____________ 0.0 ± 0.05VDC
 Pin D _____________ 0.0 ± 0.05VDC
 Pin 3 _____________ 26 ±3VAC

2) SLAVE switch ON
 Pin C _____________ 5.1 ± 1VDC
 Switch ON
 Pin A _____________ 0.0 ± 0.05VDC
 Pin D _____________ 0.0 ± 0.05VDC

3) Depress Slave SW
 Pin C _____________ 0.0 ± 0.05VDC
 Depress CCW SW
 Pin A _____________ 5.1 ± 1VDC
 Pin D _____________ 0.0 ± 0.05VDC
 SLAVE SWITCH _____________ Extended
 Release CCW SW CCW SW _____________ Extended

4) Depress CW SW
 Pin C _____________ 0.0 ± 0.05VDC
 Pin A _____________ 0.0 ± 0.05VDC
 Pin D _____________ 5.1 ± 1VDC
 Release CW SW CW SW _____________ Extended

5) Slave meter pot for Neg full scale
 Pin E _____________ -0.88 ±0.15VDC
 Pos Full Scale
 Pin E _____________ +0.88 ± 0.15VDC

6) Slave meter pot for
 0.0VDC at E
 Meter _____________ Center 1/2 needle

7) Scope from 6(+) to 4(-) _____________ OK
 Scope from 6(+) to 2(-) _____________ OK
 Scope from 2(+) to 4(-) _____________ OK

8) Scope from 2(+) to V(-) _____________ OK
 E/W wiper to opposite end of pot.
 E/W pot to minimize amplitude

9) Scope from 6(+) to 4(-) _____________ -OK
 N/S wiper to opposite end of pot.
 N/S pot to original position
 Scope from 6(+) to 2(-)
 N/S wiper to opposite end of pot.
 N/S pot to minimize amplitude _____________ OK

Tested by _____________
Inspected by _____________
5.3 GENERAL OVERHAUL

5.3.1 VISUAL INSPECTION

This section contains instructions and information to assist in determining, by visual inspection, the condition of the units major assemblies and subassemblies. These inspection procedures will assist in finding defects resulting from wear, physical damage, deterioration, or other causes. To aid inspection, detailed procedures are arranged in alphabetical order.

A. Capacitors, Fixed
 Inspect capacitors for case damage, body damage, and cracked, broken, or charred insulation. Check for loose, broken, or corroded terminal studs, lugs, or leads. Inspect for loose, broken, or improperly soldered connections. On chip caps, be especially alert for hairline cracks in the body and broken terminations.

B. Capacitors, Variable
 Inspect trimmers for chipped and cracked bodies, damaged dielectrics, and damaged contacts.

C. Chassis
 Inspect the chassis for loose or missing mounting hardware, deformation, dents, damaged fasteners, or damaged connectors. In addition, check for corrosion or damage to the finish that should be repaired.

D. Circuit Boards
 Inspect for loose, broken, or corroded terminal connections; insufficient solder or improper bonding; fungus, mold, or other deposits; and damage such as cracks, burns, or charred traces.

E. Connectors
 Inspect the connector bodies for broken parts; check the insulation for cracks, and check the contacts for damage, misalignment, corrosion, or bad plating. Check for broken, loose, or poorly soldered connections to terminals of the connectors. Inspect connector hoods and cable clamps for crimped wires.

F. Covers and Shields
 Inspect covers and shields for punctures, deep dents, and badly worn surfaces. Also, check for damaged fastener devices, corrosion and damage to finish.

G. Flex Circuits
 Inspect flex circuits for punctures, and badly worn surfaces. Check for broken traces, especially near the solder contact points.

H. Front Panel
 Check that name, serial, and any plates or stickers are secure and hardware is tight. Check that the handle is functional, securely fastened, and handle casting is not damaged or bent.

I. Fuse
 Inspect for blown fuse and check for loose solder joints.

J. Insulators
 Inspect insulators for evidence of damage, such as broken or chipped edges, burned areas, and presence of foreign matter.

K. Jacks
 Inspect all jacks for corrosion, rust, deformations, loose or broken parts, cracked insulation, bad contacts, or other irregularities.
L. Potentiometers
Inspect all potentiometers for evidence of damage or loose terminals, cracked insulation or other irregularities.

M. Resistors, Fixed
Inspect the fixed resistors for cracked, broken, blistered, or charred bodies and loose, broken, or improperly soldered connections. On chip resistors, be especially alert for hairline cracks in the body and broken terminations.

N. RF Coils
Inspect all RF coils for broken leads, loose mountings, and loose, improperly soldered, or broken terminal connections. Check for crushed, scratched, cut or charred windings. Inspect the windings, leads, terminals and connections for corrosion or physical damage. Check for physical damage to forms and tuning slug adjustment screws.

O. Terminal Connections Soldered
(1) Inspect for cold-soldered or resin joints. These joints present a porous or dull, rough appearance. Check for strength of bond using the points of a tool.
(2) Examine the terminals for excess solder, protrusions from the joint, pieces adhering to adjacent insulation, and particles lodged between joints, conductors, or other components.
(3) Inspect for insufficient solder and unsoldered strands of wire protruding from the conductor at the terminal. Check for insulation that is stripped back too far from the terminal.
(4) Inspect for corrosion at the terminal.

P. Transformers
(1) Inspect for signs of excessive heating, physical damage to the case, cracked or broken insulation, and other abnormal conditions.
(2) Inspect for corroded, poorly soldered, or loose connecting leads or terminals.

Q. Wiring/Coaxial Cable
Inspect wiring in chassis for breaks in insulation, conductor breaks, cut or broken lacing and improper dress in relation to adjacent wiring or chassis.

5.3.2 CLEANING
A. General
This section contains information to aid in the cleaning of the component parts and subassemblies of the unit.

WARNING:
GOGGLES ARE TO BE WORN WHEN USING PRESSURIZED AIR TO BLOW DUST AND DIRT FROM EQUIPMENT. ALL PERSONNEL SHOULD BE WARNED AWAY FROM THE IMMEDIATE AREA.
WARNING:
OPERATIONS INVOLVING THE USE OF A CLEANING SOLVENT SHOULD BE PERFORMED UNDER A VENTILATED HOOD. AVOID BREATHING SOLVENT VAPOR AND FUMES; AVOID CONTINUOUS CONTACT WITH THE SOLVENT. WEAR A SUITABLE MASK, GOGGLES, GLOVES, AND AN APRON WHEN NECESSARY. CHANGE CLOTHING UPON WHICH SOLVENTS HAVE BEEN SPILLED.

WARNING:
OBSERVE ALL FIRE PRECAUTIONS FOR FLAMMABLE MATERIALS. USE FLAMMABLE MATERIALS IN A HOOD PROVIDED WITH SPARK-PROOF ELECTRICAL EQUIPMENT AND AN EXHAUST FAN WITH SPARKPROOF BLADES.

B. Recommended Cleaning Agents

Table 5-1 lists the recommended cleaning agents to be used during overhaul of the unit.

NOTE:
EQUIVALENT SUBSTITUTES MAY BE USED FOR LISTED CLEANING AGENTS.

<table>
<thead>
<tr>
<th>TYPE</th>
<th>USED TO CLEAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Denatured Alcohol</td>
<td>Various, exterior and interior</td>
</tr>
<tr>
<td>DuPont Vertrel SMT</td>
<td>Various, interior</td>
</tr>
<tr>
<td>PolaClear Cleaner (Polaroid Corp.) or Texwipe TX129 (Texwipe Co.)</td>
<td>CRT display filter, LCD displays, and general purpose lens/glass cleaner.</td>
</tr>
<tr>
<td>KimWipes lint-free tissue (Kimberly Clark Corp.)</td>
<td>Various</td>
</tr>
<tr>
<td>Cloth, lint-free cotton</td>
<td>Various</td>
</tr>
<tr>
<td>Brush, flat with fiber bristles</td>
<td>Various</td>
</tr>
<tr>
<td>Brush, round with fiber bristles</td>
<td>Various</td>
</tr>
<tr>
<td>Dishwashing liquid (mild)</td>
<td>Nylon, Rubber Grommets</td>
</tr>
</tbody>
</table>

TABLE 5-1 RECOMMENDED CLEANING AGENTS
C. Recommended Cleaning Procedures

CAUTION:
DO NOT ALLOW SOLVENT TO RUN INTO SLEEVES OR CONDUIT THAT COVERS WIRES CONNECTED TO INSERT TERMINALS.

1. Exterior
 (a) Wipe dust cover and front panel with a lint-free cloth dampened with denatured alcohol.
 (b) For cleaning connectors, use the following procedure.
 (1) Wipe dust and dirt from bodies, shells, and cable clamps using a lint-free cloth moistened with denatured alcohol.
 (2) Wipe parts dry with a clean, dry lint-free cloth.
 (3) Remove dirt and lubricant from connector inserts, insulation, and terminals using a small soft bristled brush moistened with denatured alcohol.
 (4) Dry the inserts with an air jet.
 (c) Remove cover(s).
 (d) If necessary, open any blocked ventilation holes by first saturating the debris clogging the apertures with denatured alcohol and then blowing the loosened material out with an air stream.

2. Interior
 The following solvents are no longer recommended for benchtop or rework cleaning of printed circuit boards, modules, or sub-assemblies.

<table>
<thead>
<tr>
<th>Freon TF, IMC</th>
<th>TRICHLOROETHANE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon Tetrachloride</td>
<td>DETERGENT (ALL™ AND EQUIVALENTS)</td>
</tr>
<tr>
<td>Chloroform</td>
<td>METHYLENE CHLORIDE</td>
</tr>
<tr>
<td>Trichloroethylene</td>
<td>GENESOLV 2004/2010</td>
</tr>
<tr>
<td>Propyl Alcohol</td>
<td>METHYL ALCOHOL</td>
</tr>
<tr>
<td>Ethyl Alcohol</td>
<td>BUTYL ALCOHOL</td>
</tr>
<tr>
<td>Xylene</td>
<td>PRELETE (CFC-113)</td>
</tr>
</tbody>
</table>

TABLE 5-2 UNSAFE CLEANING AGENTS
CAUTION:
DO NOT USE SOLVENT TO CLEAN PARTS COMPOSED OF OR CONTAINING NYLON OR RUBBER GROMMETS. CLEAN THESE ITEMS WITH MILD LIQUID DISHWASHING DETERGENT AND WATER. USE DETERGENT FOR THIS PURPOSE ONLY.

CAUTION:
DUPONT VERTREL SMT DOES HAVE GENERAL MATERIAL COMPATIBILITY PROBLEMS WITH POLYCARBONATE, POLYSTYRENE, AND RUBBER. IT IS RECOMMENDED THAT THESE MATERIALS BE CLEANED WITH DENATURED ALCOHOL.

CAUTION:
DO NOT ALLOW EXCESS CLEANING SOLVENT TO ACCUMULATE IN ANY OF THE ADJUSTMENT SCREW CREVICES AND THEREBY SOFTEN OR DISSOLVE THE ADJUSTMENT SCREW EPOXY SEALANT.

CAUTION:
AVOID AIR-BLASTING SMALL TUNING COILS AND OTHER DELICATE PARTS BY HOLDING THE AIR NOZZLE TOO CLOSE. USE BRUSHES CAREFULLY ON DELICATE PARTS.

CAUTION:
IMPROPER CLEANING CAN RESULT IN SURFACE LEAKAGE AND CONDUCTIVE PARTICULATES, SUCH AS SOLDER BALLS OR METALLIC CHIPS, WHICH CAN CAUSE ELECTRICAL SHORTS. SEVERE IONIC CONTAMINATION FROM HANDLING AND FROM ENVIRONMENTAL CONDITIONS CAN RESULT IN HIGH RESISTANCE OR OPEN CIRCUITS.

CAUTION:
ULTRASONIC CLEANING CAN DAMAGE CERTAIN PARTS AND SHOULD GENERALLY BE AVOIDED.
NOTE:
Solvents may be physically applied in several ways including agitation, spraying, brushing, and vapor degreasing. The cleaning solvents and methods used shall have no deleterious effect on the parts, connections, and materials being used. If sensitive components are being used, spray is recommended. Uniformity of solvent spray flow should be maximized and wait-time between soldering and cleaning should be minimized.

NOTE:
Clean each module subassembly. Then remove any foreign matter from the casting.

Remove each module subassembly. Then remove any foreign matter from the casting.

(a) Casting covers and shields should be cleaned as follows:

 (1) Remove surface grease with a lint-free cloth.
 (2) Blow dust from surfaces, holes, and recesses using an air stream.
 (3) If necessary, use a solvent, and scrub until clean, working over all surfaces and into all holes and recesses with a suitable non-metallic brush.
 (4) Position the part to dry so the solvent is not trapped in holes or recesses. Use an air stream to blow out any trapped solvent.
 (5) When thoroughly clean, touch up any minor damage to the finish.

(b) Assemblies containing resistors, capacitors, rf coils, inductors, transformers, and other wired parts should be cleaned as follows:

 (1) Remove dust and dirt from all surfaces, including all parts and wiring, using soft-bristled brushes in conjunction with air stream.
 (2) Any dirt that cannot be removed in this way should be removed with a brush (not synthetic) saturated with an approved solvent, such as mentioned above. Use of a clean, dry air stream (25 to 28 psi) is recommended to remove any excess solvent.
 (3) Remove flux residue, metallic chips, and/or solder balls with an approved solvent.

(c) Wired chassis devices containing terminal boards, resistor and capacitor assemblies, rf coils, switches, sockets, inductors, transformers, and other wired parts should be cleaned as follows:
NOTE:
When necessary to disturb the dress of wires and cables, note the positions before disturbing and restore them to proper dress after cleaning.

1. Blow dust from surfaces, holes, and recesses using an air jet.
2. Finish cleaning chassis by wiping finished surfaces with a lint-free cloth moistened with solvent.
3. Dry with a clean, dry, lint-free cloth.
4. When thoroughly clean, touch-up any minor damage to the finish.
5. Protect the chassis from dust, moisture, and damage pending inspection.

(d) Ceramic and plastic parts should be cleaned as follows:
1. Blow dust from surfaces, holes, and recesses using an air jet.
2. Finish cleaning chassis by wiping finished surfaces with a lint-free cloth moistened with solvents.
3. Dry with a clean, dry, lint-free cloth.

5.3.3 REPAIR

A. General
This section contains information required to perform limited repairs on the unit. The repair or replacement of damaged parts in airborne electronic equipment usually involves standard service techniques. In most cases, examination of drawings and equipment reveals several approaches to perform a repair. However, certain repairs demand following an exact repair sequence to ensure proper operation of the equipment. After correcting a malfunction in any section of the unit, it is recommended that a repetition of the functional test of the unit be performed.

B. Repair Precautions
1. Ensure that all ESDS and MOS handling precautions are followed.
2. Perform repairs and replace components with power disconnected from equipment.
3. Use a conductive table top for repairs and connect table to ground conductors of 60Hz and 400Hz power lines.
4. Replace connectors, coaxial cables, shield conductors, and twisted pairs only with identical items.
5. Reference “component side” of a printed circuit board in this manual means the side on which components are located; “solder side” refers to the other side. The standard references are as follows: near-side is the component side; farside is the solder side; on surface mount boards with components on both sides, the nearside is the side that has the J#### and P##### connector numbers.
6. When repairing circuits, carefully observe lead dress and component orientation. Keep leads as short as possible and observe correct repair techniques.
7. There are certain soldering considerations with surface mount components. The soldering iron tip should not touch the ceramic component body. The iron should be applied only to the termination-solder filet.

8. Observe cable routing throughout instrument assembly, prior to disassembly, to enable a proper reinstallation of cabling during reassembly procedures.

CAUTION
THIS EQUIPMENT CONTAINS ELECTROSTATIC DISCHARGE SENSITIVE (ESDS) DEVICES. EQUIPMENT MODULES AND ESDS DEVICES MUST BE HANDLED IN ACCORDANCE WITH SPECIAL ESDS HANDLING PROCEDURES.

C. Electrostatic Sensitive Devices (ESDS) Protection
1. Always discharge static before handling devices by touching something that is grounded.
2. Use a wrist strap grounded through a 1MΩ resistor.
3. Do not slide anything on the bench. Pick it up and set it down instead.
4. Keep all parts in protective cartons until ready to insert into the board.
5. Never touch the device leads or the circuit paths during assembly.
6. Use a grounded tip, low wattage soldering station.
7. Keep the humidity in the work environment as high as feasibly possible.
8. Use grounded mats on the work station unless table tops are made of approved antistatic material.
9. Do not use synthetic carpet on the floor of the shop. If a shop is carpeted, ensure that a grounded mat is placed at each workstation.
10. Keep common plastics out of the work area.

D. MOS Device Protection
MOS (Metal Oxide Semiconductor) devices are used in this equipment. While the attributes of MOS type devices are many, characteristics make them susceptible to damage by electrostatic or high voltage charges. Therefore, special precautions must be taken during repair procedures to prevent damaging the device. The following precautions are recommended for MOS circuits, and are especially important in low humidity or dry conditions.
1. Store and transport all MOS devices in conductive material so that all exposed leads are shorted together. Do not insert MOS devices into conventional plastic “snow” or plastic trays used for storing and transporting standard semiconductor devices.
2. Ground working surfaces on workbench to protect the MOS devices.

3. Wear cotton gloves or a conductive wrist strap in series with a 200KΩ resistor connected to ground.

4. Do not wear nylon clothing while handling MOS devices.

5. Do not insert or remove MOS devices with power applied. Check all power supplies to be used for testing MOS devices and be sure that there are no voltage transients present.

6. When straightening MOS leads, provide ground straps for the apparatus for the device.

7. Ground the soldering iron when soldering a device.

8. When possible, handle all MOS devices by package or case, and not by leads. Prior to touching the device, touch an electrical ground to displace any accumulated static charge. The package and substrate may be electrically common. If so, an electrical discharge to the case would cause the same damage as touching the leads.

9. Clamping or holding fixtures used during repair should be grounded, as should the circuit board, during repair.

10. Devices should be inserted into the printed circuit boards such that leads on the back side do not contact any material other than the printed circuit board (in particular, do not use any plastic foam as a backing).

11. Devices should be soldered as soon as possible after assembly. All soldering irons must be grounded.

12. Boards should not be handled in the area around devices, but rather by board edges.

13. Assembled boards must not be placed in conventional, home-type, plastic bags. Paper bags or antistatic bags should be used.

14. Before removing devices from conductive portion of the device carrier, make certain conductive portion of carrier is brought in contact with well grounded table top.

E. PC Board, Two-Lead Component Removal (Resistors, Capacitors, Diodes, etc.)

1. Heat one lead from component side of board until solder flows, and lift one lead from board; repeat for other lead and remove component (note orientation).

2. Melt solder in each hole, and using a desoldering tool, remove solder from each hole.

3. Dress and form leads of replacement component; insert leads into correct holes.

4. Insert replacement component observing correct orientation.

F. PC Board, Multi-Lead Component Removal (IC’s, etc.)

1. Remove component by clipping each lead along both sides. Clip off leads as close to component as possible. Discard component.

2. Heat hole from solder side and remove clipped lead from each hole.
3. Melt solder in each hole, and using a desoldering tool, remove solder from each hole.
4. Insert replacement component observing correct orientation.
5. Solder component in place from farside of board. Avoid solder runs. No solder is required on contacts where no traces exist.

G. Replacement of Power Transistors
1. Unsolder leads and remove attaching hardware. Remove transistor and hard-coat insulator.
2. Apply Thermal Joint Compound Type 120 (Wakefield Engineering, Inc.) to the mounting surface of the replacement transistor.
3. Reinstall the transistor insulator and the power transistor using hardware removed in step (1).
4. After installing the replacement transistor, but before making any electrical connections, measure the resistance between the case of the transistor and the chassis, to ensure that the insulation is effective. The resistance measured should be greater than 10MΩ.
5. Reconnect leads to transistor and solder in place.

H. Replacement of Printed Circuit Board Protective Coating

WARNING
CONFORMAL COATING CONTAINS TOXIC VAPORS! USE ONLY WITH ADEQUATE VENTILATION.

1. Clean repaired area of printed circuit board per instructions in the Cleaning section of this manual.
2. Apply Conformal Coating, Humiseal #1B-31 HYSOL PC20-35M-01 (Humiseal Division, Columbia Chase Corp., 24-60 Brooklyn Queens Expressway West, Woodside, N.Y., 11377) P/N 016-01040-0000.
3. Shake container well before using.
4. Spray or brush surfaces with smooth, even strikes. If spraying, hold nozzle 10-15 inches from work surface.
5. Cure time is ten minutes at room temperature.

I. Programmable Read Only Memory (PROM) Replacement
The read only memory packages are specially programmed devices to provide specific logic outputs required for operation in the unit. The manufacturer's part (type) number is for the un-programmed device, and cannot be used. The Honeywell part number must be used to obtain the correctly programmed device. Refer to the “Illustrated Parts List” (IPL).
5.3.3.1 REPLACEMENT OF COMPONENTS

This section describes the procedure, along with any special techniques, for replacing damaged or defective components.

A. Connectors
 When replacing a connector, refer to the appropriate PC board assembly drawing, and follow the notes, to ensure correct mounting and mating of each connector.

B. Crystal
 The use of any crystal, other than a Honeywell crystal, is considered an unauthorized modification.

C. Diodes
 Diodes used are silicon and germanium. Use long-nose pliers as a heat sink, under normal soldering conditions. Note the diode polarity before removal.

D. Integrated Circuits
 Refer to the applicable reference for removal and replacement instructions.

E. Wiring/Coaxial Cable
 When repairing a wire that has broken from its terminal, remove all old solder, and pieces of wire from the terminal, re-strip the wire to the necessary length, and resolder the wire to the terminal. Replace a damaged wire or coaxial cable with one of the same type, size and length.

5.3.4 DISASSEMBLY/ASSEMBLY PROCEDURES

The following instructions included the procedures that are necessary to remove and disassemble the subassemblies of the KA 51.

It is assumed that the unit has been tested in accordance with Section 5.2 to locate the source of the malfunction. The unit should be disassembled only to the station where the malfunction can be corrected by repair, cleaning, or adjustment. Do not disassemble any parts or wiring unnecessarily as repeated tear downs can be detrimental to the life of the unit.

The KA 51 is comprised of a final assembly and one major subassembly. Disassembly instructions are provided to separate the subassembly from the basic unit. Reassembly can be accomplished by reversing the disassembly procedures. Refer to the subassembly drawings in Section VI during disassembly or assembly.

5.3.4.1 P.C. BOARD REMOVAL

A. Snap the three pushbuttons off of the switch shafts by pulling out on the buttons.
B. Remove the two screws that hold the back cover to the main housing.
C. Slide the printed circuit board and the meter mechanism out of the main housing.
D. When in this state of disassembly the components of the printed circuit board are readily accessible.

5.4 TROUBLESHOOTING

Refer to the troubleshooting flow chart, figure 5-5.
FIGURE 5-5 KA 51 TROUBLESHOOTING FLOW CHART
ILLUSTRATED PARTS LIST

6.1 General

The Illustrated Parts List (IPL) is a complete list of assemblies and parts required for the unit. The IPL also provides for the proper identification of replacement parts. Individual parts lists within this IPL are arranged in numerical sequence starting with the top assembly and continuing with the sub-assemblies. All mechanical parts will be separated from the electrical parts used on the sub-assembly. Each parts list is followed by a component location drawing.

Parts identified in this IPL by Honeywell part number meet design specifications for this equipment and are the recommended replacement parts. Warranty information concerning Honeywell replacement parts is contained in Service Memo #1, P/N 600-08001-00XX.

Some part numbers may not be currently available. Consult the current Honeywell catalog or contact a Honeywell representative for equipment availability.

6.2 Revision Service

The manual will be revised as necessary to reflect current information.

6.3 List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>Motor or Synchro</td>
</tr>
<tr>
<td>C</td>
<td>Capacitor</td>
</tr>
<tr>
<td>CJ</td>
<td>Circuit Jumper</td>
</tr>
<tr>
<td>CR</td>
<td>Diode</td>
</tr>
<tr>
<td>DS</td>
<td>Lamp</td>
</tr>
<tr>
<td>E</td>
<td>Voltage or Signal Connect Point</td>
</tr>
<tr>
<td>F</td>
<td>Fuse</td>
</tr>
<tr>
<td>FL</td>
<td>Filter</td>
</tr>
<tr>
<td>FT</td>
<td>Feedthru</td>
</tr>
<tr>
<td>I</td>
<td>Integrated Circuit</td>
</tr>
<tr>
<td>J</td>
<td>Jack or Fixed Connector</td>
</tr>
<tr>
<td>L</td>
<td>Inductor</td>
</tr>
<tr>
<td>M</td>
<td>Meter</td>
</tr>
<tr>
<td>P</td>
<td>Plug</td>
</tr>
</tbody>
</table>

Table 1
Abbreviations
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q</td>
<td>Transistor</td>
</tr>
<tr>
<td>R</td>
<td>Resistor</td>
</tr>
<tr>
<td>RT</td>
<td>Thermistor</td>
</tr>
<tr>
<td>S</td>
<td>Switch</td>
</tr>
<tr>
<td>T</td>
<td>Transformer</td>
</tr>
<tr>
<td>TP</td>
<td>Test Point</td>
</tr>
<tr>
<td>U</td>
<td>Component Network, Integrated Circuit, Circuit Assembly</td>
</tr>
<tr>
<td>V</td>
<td>Photocell/Vacuum Tube</td>
</tr>
<tr>
<td>W</td>
<td>Waveguide</td>
</tr>
<tr>
<td>Y</td>
<td>Crystal</td>
</tr>
</tbody>
</table>

Table 1 (Continued)
Abbreviations
6.4 Sample Parts List

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>PART NUMBER</th>
<th>FIND NO</th>
<th>DESCRIPTION</th>
<th>UNIT OF MEASURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>CZ001</td>
<td>106-04224-0047</td>
<td></td>
<td>CAP CHIP .22UF X7R</td>
<td>EA 1.00</td>
</tr>
<tr>
<td>CZ002</td>
<td>106-04224-0047</td>
<td></td>
<td>CAP CHIP .22UF X7R</td>
<td>EA 1.00</td>
</tr>
<tr>
<td>CZ003</td>
<td>106-04224-0047</td>
<td></td>
<td>CAP CHIP .22UF X7R</td>
<td>EA 1.00</td>
</tr>
<tr>
<td>R2038</td>
<td>139-03241-0000</td>
<td></td>
<td>RES CH 3.3K EW 1%</td>
<td>EA 1.00</td>
</tr>
<tr>
<td>R2039</td>
<td>139-02430-0000</td>
<td></td>
<td>RES CH 243 EW 1%</td>
<td>EA 1.00</td>
</tr>
<tr>
<td>R2040</td>
<td>139-00750-0000</td>
<td></td>
<td>RES CH 75.0 EW 1%</td>
<td>EA 1.00</td>
</tr>
<tr>
<td>TP2001</td>
<td>008-00309-0000</td>
<td></td>
<td>TEST POINT SURF MN</td>
<td>EA 1.00</td>
</tr>
<tr>
<td>TP2002</td>
<td>008-00309-0000</td>
<td></td>
<td>TEST POINT SURF MN</td>
<td>EA 1.00</td>
</tr>
<tr>
<td>U2005</td>
<td>12051354-0001</td>
<td></td>
<td>PP-IC,UPD48234G5-</td>
<td>EA 1.00</td>
</tr>
<tr>
<td>U2006</td>
<td>12051354-0001</td>
<td></td>
<td>PP-IC,UPD48234G5-</td>
<td>EA 1.00</td>
</tr>
<tr>
<td>U2021</td>
<td>12061010-0001</td>
<td></td>
<td>SI-IC,MEMORY CNTLR</td>
<td>EA 1.00</td>
</tr>
<tr>
<td>U2022</td>
<td>12061014-0001</td>
<td></td>
<td>SI-IC,OSP.CONTROLL</td>
<td>EA 1.00</td>
</tr>
<tr>
<td>Y2001</td>
<td>04416054-0015</td>
<td></td>
<td>XTAL OSC,36.000MHZ</td>
<td>EA 1.00</td>
</tr>
<tr>
<td>Y2002</td>
<td>04416054-0014</td>
<td></td>
<td>XTAL OSC,20.000MHZ</td>
<td>EA 1.00</td>
</tr>
<tr>
<td>002-09229-0000</td>
<td></td>
<td></td>
<td>GP BOARD</td>
<td>RF .00</td>
</tr>
<tr>
<td>009-09229-0000</td>
<td></td>
<td></td>
<td>GP BOARD</td>
<td>EA 1.00</td>
</tr>
<tr>
<td>01243055-0001</td>
<td></td>
<td></td>
<td>INSULATOR, THERMAL</td>
<td>EA 3.00</td>
</tr>
<tr>
<td>01250068-0001</td>
<td></td>
<td></td>
<td>SPACER, HEADER</td>
<td>EA 6.00</td>
</tr>
<tr>
<td>016-01040-0000</td>
<td></td>
<td></td>
<td>COATING TYPE AR</td>
<td>AR 1.00</td>
</tr>
<tr>
<td>016-01442-0000</td>
<td></td>
<td></td>
<td>E-6000 CLEAR SEALA</td>
<td>AR 1.00</td>
</tr>
<tr>
<td>192-09229-0000</td>
<td></td>
<td></td>
<td>GP BOARD</td>
<td>RF .00</td>
</tr>
<tr>
<td>300-09229-0000</td>
<td></td>
<td></td>
<td>GP BOARD, FP0500</td>
<td>RF .00</td>
</tr>
<tr>
<td>34050-0084</td>
<td></td>
<td></td>
<td>SPACER, THD*O</td>
<td>EA 2.00</td>
</tr>
<tr>
<td>46086-0007</td>
<td></td>
<td></td>
<td>SCREW, CAPTIVE, 4-40</td>
<td>EA 3.00</td>
</tr>
</tbody>
</table>

The above is only a sample. The actual format and style may vary slightly. A 'Find Number' column, when shown, references selected items on the BOM's accompanying Assembly Drawing. This information does not apply to every BOM. Therefore, a lack of information in this column, or a lack of this column, should not be interpreted as an omission.

Figure 6-1
Sample Parts List
THIS PAGE IS RESERVED
6.5 KA 51 FINAL ASSEMBLY

071-01053-0000 Rev. 4

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>PART NUMBER</th>
<th>FIND NO</th>
<th>DESCRIPTION</th>
<th>UM</th>
<th>0000</th>
<th>0099</th>
</tr>
</thead>
<tbody>
<tr>
<td>012-01088-0000</td>
<td>CUSHION</td>
<td>EA</td>
<td>.</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>023-00096-0001</td>
<td>MTR SLAVE</td>
<td>EA</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>025-00018-0000</td>
<td>WIRE 26 BLK</td>
<td>IN</td>
<td>.</td>
<td>3.60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>025-00018-0022</td>
<td>WIRE 26 RED</td>
<td>IN</td>
<td>.</td>
<td>3.60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>057-01520-0001</td>
<td>SERIAL NUMBER TAG</td>
<td>EA</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>071-01053-0099</td>
<td>COMMON BOM</td>
<td>EA</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>088-00393-0001</td>
<td>PLATE FACE</td>
<td>EA</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>088-00404-0000</td>
<td>COVER</td>
<td>EA</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>088-00406-0001</td>
<td>PSHBTN W/MARKING</td>
<td>EA</td>
<td>.</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>088-00406-0002</td>
<td>PSHBTN W/MARKING</td>
<td>EA</td>
<td>.</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>088-00406-0003</td>
<td>PSHBTN W/MARKING</td>
<td>EA</td>
<td>.</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>089-06414-0004</td>
<td>SCR PHP 2-28X1/4</td>
<td>EA</td>
<td>.</td>
<td>2.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200-00690-0000</td>
<td>COMPENSATOR PC BD</td>
<td>EA</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
6.6 KA 51 COMPENSATOR PC BD

200-00690-0000 Rev. 3

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>PART NUMBER</th>
<th>FIND NO</th>
<th>DESCRIPTION</th>
<th>UM</th>
<th>0000</th>
</tr>
</thead>
<tbody>
<tr>
<td>007-06029-0000</td>
<td>DIO S 1N457A</td>
<td>EA</td>
<td>4.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>009-05366-0000</td>
<td>PC BD</td>
<td>EA</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>016-01026-0000</td>
<td>RTV CLEAR DC #732</td>
<td>AR</td>
<td>.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>019-05069-0000</td>
<td>XFMR</td>
<td>EA</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>031-00226-0000</td>
<td>SW MOM DPDT</td>
<td>EA</td>
<td>2.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>031-00226-0002</td>
<td>SW MOM DPDT</td>
<td>EA</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>096-01030-0030</td>
<td>CAP TN 22UF10%35V</td>
<td>EA</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>130-00103-0023</td>
<td>RES FC 10K QW 5%</td>
<td>EA</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>130-00512-0023</td>
<td>RES FC 5.1K QW 5%</td>
<td>EA</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>133-00045-0005</td>
<td>RES VA 10K QW 30%</td>
<td>EA</td>
<td>2.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>136-01002-0072</td>
<td>RES PF 10K QW 1%</td>
<td>EA</td>
<td>2.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>150-00004-0010</td>
<td>TUBING TFLN 22AWG</td>
<td>IN</td>
<td>1.20</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
NOTE:
1. FOR COMPLETE ITEM DESCRIPTION SEE B/M 200-0690-00.

FIGURE 6-4 KA 51 COMPENSATOR PC BOARD ASSEMBLY DRAWING
(Dwg. 300-00902-0000 Rev. 2)
NOTE:
1. FOR COMPLETE ITEM DESCRIPTION SEE B/M 200-0690-00.

FIGURE 6-4A KA 51 COMPENSATOR PC BOARD ASSEMBLY DRAWING
(Dwg. 300-00902-0000 Original Manual Revision)